Вход Регистрация
Контакты Новости сайта Карта сайта Новости сайта в формате RSS
 
 
Новости для выпускников
МГУ им.Ломоносова
SUBSCRIBE.RU
 
База данных выпускников
 
 
Рассылки Subscribe.ru
Выпускники МГУ
Выпускники ВМиК
Долголетие и омоложение
Дайв-Клуб МГУ
Гольф
Новости психологии
 
Рассылки Maillist.ru
Выпускники МГУ
Активное долголетие, омоложение организма, геропротекторы
 

У болези Паркинсона и старения общие причины

 

Черное вещество мозга человека содержит дофаминергические нейроны, которые с возрастом дегенерируют. При паркинсонизме процесс дегенерации нейронов идет ускоренными темпами (рис. из статьи Manfredi 2006. Nature genetics. 2006. V.38. P.507-508)
Черное вещество мозга человека содержит дофаминергические нейроны, которые с возрастом дегенерируют. При паркинсонизме процесс дегенерации нейронов идет ускоренными темпами (рис. из статьи Manfredi 2006. Nature genetics . 2006. V.38. P.507-508)

Недавно две группы ученых убедительно доказали, что одной из причин старения и болезни Паркинсона являются дефектные митохондрии, быстро размножающиеся в нейронах головного мозга и приводящие к их дегенерации. Дефектными они становятся в результате соматической мутации - удаления участка митохондриальной ДНК. Однако остается неясным, почему с возрастом дефектные митохондрии появляются в определенных нейронах головного мозга.

Пока нет общепринятого мнения о причинах старения. По одной из гипотез, старение и смерть индивидуумов, не способных более к размножению, выгодно для вида, поскольку экономятся ресурсы (пища, территория), необходимые для молодых, более полезных для существования всего вида особей. Хотя не известно точно, сколько генов задействовано в этой программе старения и как они взаимодействуют, но, детально изучив их, можно попытаться заблокировать механизм старения.

Согласно же другой гипотезе, старение - результат действия сотен или даже тысяч вредных генетических признаков, которые начинают проявляться лишь по окончании репродуктивного периода. Мы будем называть их DILL-признаки (DILL - от англ. Deleterious In Late Life ), или DILL-аллели.

Почему эти DILL-признаки накапливались в течение эволюции? Выделяют три возможные причины (Cortopassi 2002). Во-первых, численность популяции на протяжении большей части эволюции человека была крайне низкой (примерно 10 000), в связи с чем случайные процессы сильно влияли на эволюцию генов человека и приводили к закреплению множества вредных аллелей. Недавнее резкое увеличение численности популяции еще не отразилось на эволюции генов человека.

Во-вторых, мутация, проявляющаяся лишь после репродуктивного периода, очень слабо влияет на приспособленность организма (число детей) и поэтому может распространиться в популяции случайным образом, без влияния естественного отбора.

И в-третьих, даже если предположить, что DILL-мутации как-то влияют на приспособленность (например, мудрые советы пожилых людей обеспечивают лучшую выживаемость их детей и внуков), естественный отбор не мог элиминировать эти мутации, поскольку в древней человеческой популяции средняя продолжительность жизни была низкой. За 5 миллионов лет могло накопиться множество мутаций, вызывающих ухудшение слуха в 50 лет, ослабление памяти в 55, болезнь Паркинсона в 60, дряблость кожи в 65... Все они находились в полной безвестности, пока примерно 10 000 лет назад человек не занялся земледелием, продолжительность его жизни увеличилась, и все эти DILL-мутации стали проявляться. Начиная с этого момента человек стал умирать преимущественно от внутренних причин (DILL-аллели), а не от внешних.

Однако гены накопили DILL-мутации неравномерно, поэтому и потенциальная вредность от этих генов в старости будет разная. Например, митохондриальные гены (те которые содержатся в митохондрии, наследуемой через цитоплазму яйцеклетки от матери) должны содержать много DILL-мутаций. Это объясняется тем, что в связи с гаплоидностью, цитоплазматическим наследованием и отсутствием рекомбинации митохондриальные гены обладают низкой эффективной численностью, поэтому на их эволюцию сильно влияют случайные факторы и слабо влияет естественный отбор. В результате дрейфа генов в малочисленной популяции митохондриальных генов могут фиксироваться неоптимальные аллели, содержащие вредные мутации.

Кроме того, митохондрии обладают повышенным темпом мутирования, что увеличивает вероятность появления новой соматической мутации в течение жизни человека. Но, поскольку в каждой клетке содержатся тысячи митохондриальных геномов (в среднем около 2000), они создают генетическую избыточность, и один появившийся мутант, сосуществуя с нормальными митохондриальными геномами, не может сильно повлиять на приспособленность клетки. Дальнейшая судьба мутантного генома зависит от соотношения сил на внутриклеточном и межклеточном уровнях (Taylor 2002).

Внутри клетки митохондриальные геномы конкурируют друг с другом. Геномы, которые быстрее реплицируются, увеличивают свою численность внутри клетки и вытесняют медленно-размножающихся конкурентов. Если у одного генома произошла крупная делеция (вырезание участка ДНК), то он становится нефункциональным (так как производится меньше АТФ - энергетической молекулы, необходимой для ускорения большинства биологических реакций), но зато коротким и быстро размножающимся - и такой эгоистичный геном победит во внутриклеточной борьбе.

Однако межклеточный уровень конкуренции ставит всё на свои места: клетка, в которой мутантные митохондриальные геномы достигли высокой концентрации, менее жизнеспособна и медленнее делится по сравнению с клеткой с нормальными митохондриальными геномами, и мутантные геномы элиминируются из организма вместе со своей клеткой.

Важно отметить, что порог проявления патогенного эффекта мутантного генома варьирует в зависимости от энергетической потребности клетки. Так, ткани, сильно зависящие от митохондриального метаболизма (мышцы, сердце и нервная система) более чувствительны к накоплению мутантных геномов и, значит, имеют самый низкий порог.

Помимо своей высокой энергетической емкости нервная ткань характеризуется чрезвычайно медленным делением клеток, что приводит к тому, что межклеточный уровень отбора оказывается слабее внутриклеточного и с большой вероятностью может проявиться патогенный эффект, вызванный мутантными митохондриальными геномами.

Исследуя мутации в митохондриальной ДНК (мтДНК) нейронов мозга, две независимых лаборатории (Bender et al. 2006; Kraytsberg et al. 2006) получили интересные результаты о причинах старения и болезни Паркинсона - одной из основных нейродегенеративных болезней старости, характеризующейся нарушением планирования действий, что выражается в акинезии (ограничение произвольных движений), ригидности (повышение мышечного тонуса) и тремор конечностей (дрожание). Результаты их работы опубликованы в майском номере Nature Genetics .

Объектом исследований был головной мозг умерших людей, а именно участок под названием черное вещество ( substantia nigra ). Черное вещество находится в базальных ганглиях головного мозга (под корой больших полушарий), основная функция которых - регуляция произвольных движений: перехода от замысла (подготовки действия) к выполнению выбранной программы действия. При паркинсонизме происходит дегенерация нейронов черного вещества, выделяющих дофамин и регулирующих таким образом работу базальных ганглиев в целом. Конкретная причина дегенерации дофаминергических нейронов до сих пор была неизвестна.

Исследования нейронов черного вещества показали быстрое накопление делеций с возрастом, а также у больных паркинсонизмом (рисунок из статьи Kraytsberg  et al. 2006. Nature genetics, 38, 518-520)
Исследования нейронов черного вещества показали быстрое накопление делеций с возрастом, а также у больных паркинсонизмом (рисунок из статьи Kraytsberg et al. 2006. Nature genetics , 38, 518-520)

Техническим ноу-хау, позволившим сделать новые открытия, оказалась возможность исследования мутаций в митохондриальной ДНК (мтДНК) и доли мутантных геномов в каждом конкретном нейроне черного вещества, а не во всей нервной ткани.

Исследования нейронов черного вещества показали быстрое накопление делеций с возрастом. Оказалось также, что некоторые нейроны имеют сильный дефицит цитохром-c-оксидазы (COX-) - фермента, необходимого для функционирования дыхательной цепи и образования молекул АТФ. Анализ показал, что нейроны COX- содержат больше 60% мутантной мтДНК (см. рисунок), и делеции находятся в области генов, кодирующих субъединицы цитохром-c-оксидазы.

Слева: нейроны COX- окрашены в фиолетовый цвет, тогда как нейроны с достаточным количеством цитохром-c-оксидазы (COX+) окрашены в коричневый. Справа: доля делеций в нейроне (красные - нейроны с дефицитом <nobr>цитохром-c-оксидазы</nobr>, синие - с достаточным ее количеством). Рис. из статьи Kraytsberg et al. 2006
Слева: нейроны COX- окрашены в фиолетовый цвет, тогда как нейроны с достаточным количеством цитохром-c-оксидазы (COX+) окрашены в коричневый. Справа: доля делеций в нейроне (красные - нейроны с дефицитом цитохром-c-оксидазы, синие - с достаточным ее количеством). Рис. из статьи Kraytsberg et al. 2006

Важно отметить, что разные нейроны содержат уникальные делеции, что говорит о соматическом происхождении этих мутаций в нейронах. Интересно, что нейроны, выделенные из соседней области головного мозга (гиппокамп) старых индивидуумов не показывали высокого уровня делеций. Возможно, повышенная фоновая активность нейронов черного вещества сопряжена с образованием активных форм кислорода, которые, являясь мутагенами, приводят к образованию делеций в мтДНК. Активные формы кислорода могут появляться также и при метаболизме дофамина. Основываясь на этом предположении, для предотвращения появления делеций врачи предлагают обрабатывать нейроны черного вещества антиоксидантными препаратами.

Итак, соматические делеции в мтДНК играют важную роль в деградации нейронов при старении и болезни Паркинсона. Поскольку делеции появляются независимо в разных нейронах черного вещества примерно в одно и тоже время и затрагивают примерно одно и то же место, скорее всего существуют определенные DILL-мутации, индуцирующие эти делеции. Например, в мтДНК человека существует повтор из 13 пар оснований, который приводит к делециям в соматических тканях (Schon et al. 1989), причем индуцирует именно делеции, затрагивающие гены цитохром-c-оксидазы. Этот повтор (как и все повторы в мтДНК) может быть интерпретирован как DILL-мутация (Cortopassi 2002).

Другая потенциальная DILL-мутация может находиться в митохондрильной ДНК-полимеразе - ферменте, который реплицирует мтДНК. Мутантная форма данного фермента приводит к большому числу ошибок при репликации мтДНК, и линии мышей с таким ферментом страдают от раннего старения из-за накопления большого числа мутаций в мтДНК (Trifunovic et al . 2004).

Скорее всего, болезнь Паркинсона, как и старение, может быть вызвана многочисленными причинами. Например, мутация в ядерно-кодируемом гене альфа-синуклеине приводит к слипанию мутантных белков и образованию цитоплазматических включений, характерных для болезни Паркинсона (Polymeropoulos et al. 1997). Сходный эффект проявляется при нарушении у мышей автофагии - процесса удаления старых белков из цитоплазмы клеток (Hara et al. 2006).

Успех в изучении и лечении каждой из причин болезни Паркинсона и старения вносит свой вклад в общее дело борьбы с этим недугом. Впервые болезнь Паркинсона была описана в 1817 году Джеймсом Паркинсоном. Через век - в 1919 году - была предложена заместительная терапия посредством введения в кровь предшественника дофамина, что компенсирует функцию дегенерировавших нейронов черного вещества. В наше время научно доказана причина дегенерации нейронов и обсуждается возможность предотвращения появления этих делеций посредством антиоксидантов (Bender et al. 2006; Kraytsberg et al. 2006). Хочется верить, что к концу XXI века люди смогут приблизиться к причине еще ближе и научатся удалять DILL-мутации непосредственно из генома.

Источники:
1) Bender et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease // Nature genetics . 2006. V. 38. P. 515-517.
2) Kraytsberg et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons // Nature genetics . 2006. V. 38. P. 518-520.
3) G. Manfredi. mtDNA clock runs out for dopaminergic neurons // Nature genetics . 2006. V. 38. P. 507-508.

Как помочь проекту "Активное долголетие"


  Рекомендовать »   Написать редактору  
  Распечатать »
 
  Дата публикации: 14.10.2018  
 

     Дизайн и поддержка: Interface Ltd.

    
Rambler's Top100