|
|
Слизевики и математика против рака
Биофизики из Германии и Сингапура предположили, что математические модели, основанные на поведении Речь идёт об организме
В 2010 году японский математический биолог Тосиюки Накагаки (ныне работающий в На этот раз исследователей заинтересовали стадии роста слизевика. Миксомицеты начинают жизнь в виде изолированных спор, которые затем растут, встречаются и сливаются. Получившиеся островки выбрасывают усики, с их помощью находят другие островки, и в итоге образуется большой одноклеточный организм. По отдельности малышам выжить трудновато, а входя в состав гиганта, они получают доступ ко всем его вкусным жидкостям. Точка, в которой отдельные сети (каждая со своей транспортной системой) становятся взаимосвязанными настолько, чтобы позволить жидкости и другим веществам свободно перемещаться между ними, называется Адриан Фессель, Ханс-Гюнтер Дёберайнер и их коллеги из Исследователи построили сложные диаграммы в попытке проследить связь между усиками и отметили, сколько соединений приходится на каждый узел. Выяснилось, что переход от нескольких островов к взаимосвязанной сети - тот самый перколяционный переход - происходил всегда при определённом соотношении линий и узлов. Независимо от общего числа узлов было важно, как много из них имели по три новые линии, сколько - одну и сколько узлов оставалось в полной изоляции. Если это открытие и впрямь позволит понять, как формируются раковые опухоли, то последние можно будет заморить голодом, то есть отрезать их от потока питательных веществ, циркулирующих в здоровой ткани. И действительно, с помощью своей математической модели исследователи смогли воспроизвести результаты эксперимента 2003 года, когда была сделана попытка сымитировать рост сосудистой сети с помощью слизевика. Результаты исследования опубликованы в журнале Подготовлено по материалам
|
Дизайн и поддержка: Interface Ltd. |
|